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Devil's staircase in kinetically limited growth
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The devil’s staircase is a term used to describe surface or an equilibrium phase diagram in which various
ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example
is a one-dimensional Ising modgP. Bak and R. Bruinsma, Phys. Rev. Letf, 249 (1982] wherein long-
range and short-range forces compete, and the periodicity of the gaps between minority species covers all
rational values. In many physical cases, crystal growth proceeds by adding surface layers that have the lowest
energy, but are then frozen in place. The emerging layered structure is not the thermodynamic ground state, but
is uniquely defined by the growth kinetics. It is shown that for such a system, the grown structure tends to the
equilibrium ground state via a devil's staircase traversing an infinity of intermediate phases. It would be
extremely difficult to deduce the simple growth law based on measurement made on such a grown structure.

DOI: 10.1103/PhysReVE.66.041605 PACS nuni)er68.55—a, 75.10.Hk, 81.30-t

The original devil’'s staircase is a footpath between This model describes a situation in which each layer can
Kingshouse to Kinlochleven in Scotland, so called becausee of one of the two types;= +1. The first term givesr,
of the huge number of discrete steps between Glencoe and —1 a lower formation energy tham;=+1, while the
the ridge. In technical usage, the term has been used to dgecond term gives a long-ranged repulsion between like lay-
scribe situations in which the number of discrete steps withirg g
a finite range becomes formally infinite. Examples include  pyreyious work has concentrated on the devil's staircase as
inter alia the formation of facets of a crysti,3], antiferro- 5 equilibrium phenomenon, and searched for the thermody-
electric, smectic and lyotropic liquid crystdlé,5,3, mag-  amic ground state. Here, by contrast, the dynamics of

netic structure in cerium monopnictidg& and granular me- : ; ;
dia [7]. Usually the staircase emerges from the interplaygrOWth are considered, spins being added to the system so as

between long-range repulsivantiferromagneticand short- :ﬂerrmlr;m:rzse trlz)(\aNenergy, but then being fixed forever as fur-
range attractivegferromagnetig forces, with transitions be- YErs grow.

tween stable phases appearing as the relative strengths of theMany physical systems can be mapped onto this Hamil-

interactions are altered. The precise form of the interaction%_on'an: a simple example is a line of charges in an external
is not crucial[8]. ield. The same Ham|lton.|an describes a situation where the
The drive toward nanofabrication has led to a tremendoud’i "€present the separations between layers rather than the
interest in growing mu|ti|ayer structures. In typ|ca| methodslayers themselves. Now the first term indicates that it costs
such as molecular beam epitaxy or chemical vapor deposi-
tion, careful control of the composition of the deposited ma-  _g4s
terial is required to create complex artificial structures. With-
out such careful control nonperiodic structures tend to form.
By contrast, some structures of technological interest such a
guantum dots may self-assemble, and understanding the IcG -0.5
cal equilibria that govern growth is crucial. In this article v
layer-by-layer surface growth for a simple model is shown toE’
yield a devil's staircase structure. This suggests that for a§ _oss
wide class of systems the expected structure grown at zerg
temperature is aperiodic, and might easily be misinterpretecg
as disordered. This apparent disorder is not real, but ariseg
from the locally stable structure being dependent on the -06
thickness of the film, and there being an infinite number of
locally stable structures.
Specifically, the Hamiltonian for our model is equivalent 065 , ,

to that considered by Bak and Bruinsifia9], -1.55 -15 -1.45 -14
A

H =A2 o+ 2 ri]"ai gj. (1) FIG. 1. Self-similar devil's staircase of phases reached asymp-
! gl totically in growth with v=2. Plotted are the value &k and the
mean values of evaluated over the final 2520 layers of a 300 000
layer sample. 2520€2X3X2X5X 7 X 2X 3) is chosen because it
*Permanent address: Department of Physics and Astronomy, The commensurate with all periodicities from one to ten layers, and
University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, United with 12,14,15,18,20,21, etcFor these cases the plotted value of
Kingdom. Email address: gjackland@ed.ac.uk (o) is exact, for others it may be:0.04%.
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FIG. 2. Mean surface potential averaged over the preceding 72 layers before growirl &he +1 layer. Highly ordered regions
correspond to short-period phases which are stable over a significant range of thickness. The slope of the graph shows that even within these
regions, equilibrium has not been reached and ultimately the order breaks down as a new phase is stabilized. A long-range trend towards an
asymptotic value ofV), is observed. This figure generated for 1, A=1, V(0)=0.
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FIG. 3. Detail from Fig. 2, illustrating the ordered nature of the potential variation for a region where long-period phases are stable. The
long-period repeats give rise to multiple valuegdj, within the same phase, hence the multiple branches. This multiplicity can be reduced
or eliminated by consideringV),s,o at the expense of smearing out details. In this respect the figure is not self-similafarbitearily
chosen 72-layer averaging is significant on the scale of this figure, manifesting itself for the phases that are stable over more than 72 layers
as an initial increase and subsequent curvatut®&/jn,. The pure phase behavior is typically a linear decreag® pf, with N, as seen after
72 layers for those phases which are stable over a sufficiently long period.
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less energy to grow either type on a similar layer, while the '
second term again indicates long-range repulgaitractior)
between like(unlike) layers. This might describe a system
where epitaxial growth was favored, but generates a long-
range strain field that needs to be periodically relieved.

Alternately, it may describe a situation such as silicon
carbide growth[10,11] or stacking of close-packed planes,
where each layer is locally eithé&BA or ABC stacked de-
pending on its neighbors. Now represents the relative ori- Vv
entation of adjacent layers. In close-packed lay®eB) and
interlayer (o) notation, equivalent stacking sequences for fcc
containing a growth fault are

...ABCABCACBACBA.., (2

i i i i e o S S S S ©)
Notice that a single fault of this type cannot be accommo- 00 260 ' 4(')0 660
dated within periodic boundary conditions. This led Bak and Thousands of layers

Bruinsma to postulate that the actual defects in the devil's
staircase are fractional, since more than one must be created FIG. 4. Mean value ofr for v=1, A=1. The upper line is
together. In the growth case there is no such constraint: thidveraged over the preceding 2520 layers, picking out as straight
is equivalent to the difference between intrinsic and extrinsidines phases of repeat period as in Fig. 1. Transitions between these
stacking faults in close-packed materidishich can arise Short-period phases are characterized by longer-period phases,
from removal or insertion of a plaheand growth defects }'Ivuh;f:azgenSg;‘\’,"vg:r{(}g'sczkob;%k(216%0/;”53;%’ ;gfriﬁts:;éﬂg)’ a_l_r:g'd
(basal plane twinswhich reverse the sense of sFacklng andIower line is averaged over the whole layer, and shows the very
can be generated only by finite shear of the entire sample Yow monotonic growth of o) towards the asymptotic value of
durlr_lg growth. . . . (o)=0). The increase in the mean value ofdy is logarithmic, a
Finally, the model can describe a simple history- o;qonaple fit to the graph beifig)=[7—2.9InN]"L. For higher
dependent S,ySte_m’ Where the state Qf the system depends Ql}es ofA the convergence dfo)—0 is even slower. Fop>1
a sum over its historical values. In this case the “layer nuUM+ne asymptotic value die) is nonzero: itis a phase from the devil's
ber” should be interpreted as a time rather than space dimeRrgaircase dependent updn
sion.
For the growth dynamics, one simply considers addingyrown. For the case af=2 the asymptotic value aV) 2520
the (n+1)th layer to the preexisting layers with whichever  pjotted agains\ picks out the conventional devil's staircase
spin reduces the energy. This can be determined entirely byahayior(Fig. 1).

the sign of the local potential at the position of the next layer oy interest lies in the convergence of the structure with

Vit layer number—physically how thick a film must grow to
N recover bulk behavior. Again this can be monitored using
AE. . .=V —AarS 1770 o 2 (V)m, now plotted against the layer number. For2 the
ne1” U1l ,Zl ! U') 7 @ growth converges fairly rapidly to the equilibrium value, the

effective screening of the surface is fast compared with the
In zero-temperature case considered hereVif.; is  integer layer spacing. For smaller convergence is slow:
positive, the next added layer,,;=—1, otherwise Figures 2—4 show the case of1, A=1, now the screen-
on+1=+1. Furthermore, the final structure is uniquely de-ing is sufficiently slow that a wide range of different phases
fined and while it may appear random, it has zero entropy. from the “devil's staircase” are actually observed over a
At thermodynamic equilibrium, or asymptotically for the number of layers.
growth dynamics, this mod¢Eqg. (1)] has two simple limit- The actual phases and “screening” effect are illustrated
ing cases. For weak long-range interactions defined by by the running average of the ratio of=+1 to o=—1
w over the previous 72 layer§?2 is chosen such that phases
E n-v with periods 2,3,4,6,8,9, etc., will give a constant valu®
=1 further reduce the oscillation, the ratio is printed out only at
layers witho= + 1. Substantial single phase regions can be
on,=—1 for all n, meanwhile for smalA alternating behav- seen, together with shorter transitional regions. The overall
ior o,=(—1)" is observed. For intermediate values®othe  trend towards a limiting value can be seen.
devil's staircase of phases is recovered in the asymptotic Each phase is stable only over a finite number of layers.
limit (Fig. 1) [1]. Since the range of stability is inversely proportional to the
In the case of growth, we find that a convenient parameteperiod of the structurg¢l], the thickness over which some
to monitor is(V),,, the rolling mean value of the potential long-period structures are stable will be shorter than the pe-
betweenV, _,, and V,, wherever a layer typer,=+1 is riodic repeat distance of these structures. Consequently, they

A> ={(v), 5)
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cannot be identified unambiguously. result of the present work is to show that even when all
The long-term trend of Fig. 2 is towar@V),=—0.5.  experimental imperfections are removed, growth Kkinetics
This corresponds to equal numberscof =1 which give a  still results in a structure that will appear disordered.
mean field value ofV=0 averaged over all layers, and By interpreting the layer numbé¥ as a time rather than a
(V)m=—A/2=—-0.5 averaged over the=+1 layers only. thickness, this type of growth-kinetic model also provides a
A very curious phenomenon observed in Fig. 2 is that thesimple model of history dependence. In many social phe-
ordered phases shoawntiscreeningoehavior: the mean value nomena, decisions are made for one of two courses of action
of (V)m moves away from the asymptotic value for most of hased on the evidence of the past behavior with more recent
fche range of thg qrdered phase. Th.us.while the overall trengyidence having a stronger weigli3]. Here the model al-
is an asymptotic increase ¢¥)n,,, within any given phase ready contains enough complexity to behave counterintu-
d(V)m/dN is negative[12]. Evolution towards the asymp- itively: the long-term trend of increasingy),, is opposite in
tote is achieved .V|athe boundaries between the phases, ratrg?én to thed(V),/dN measured over the stable phases, de-
than the screening by the phases themselves. _ spite the fact that formally the devil's staircase provides a
In mapping onto a real growth process, the valu#\d$  siaple phase at a, and by implicatiord(V),/dN is nega-
determined by the material being deposited; however, it may,,e everywhere. Of course, the spin-Ising model is a gross
be possible by choice of substrate or external applied field t@ersimplification of any real decision making process: this
control the initial value of the potential. By doing so, the gy serves to emphasize the nontrivial relation between the
density profile ofr= +1 may be varied. This is not straight- ode| and its behavior, and the difficulty for measurement
forward however: if the initial condition is compatible with \yhen d(V),,/dN is negative everywhere whildV/AN is
the equilibrium structure, a perfect multilayer can be grown;nositive.
if not, the concentration will traverse all possible phases with | sum, the growth kinetics of a simple model exhibiting
o=+1 density intermediate between the starting and equifong-range antiferromagnetic and short-range ferromagnetic
librium ones. There are an infinity of these phases, but theipgering have been studied. This has been shown to exhibit
thickness must take an integer value, thus not all phases cgggarithmically slow equilibration to the equilibrium struc-
actually be observed. If the interlayer spacing is taken to b@yre passing through a formally infinite number of interme-

of atomic dimension, a perfectly growfe., zeroT, zero  {iate phases that form a devil’s staircase.
entropy film of even a millimeter thickness may not reach

equilibrium and will appear disordered to any experimental The author would like to thank D. Srolovitz and J. Rick-
probe. Of course, in a real system thermal effects and impeman for helpful discussions and hospitality at Princeton Uni-
fections in growth will cause additional disorder—the centralversity, and the Fulbright Foundation for support.
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political parties. The voter’s personal prefereficeasured by

A) is tempered by a belief that any party too long in govern-
ment becomes corrugmeasured by). A study of the voting
pattern is unlikely to discern this determination decision-
making process, concluding instead that the pattern is random.
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