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Devil’s staircase in kinetically limited growth
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Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

~Received 6 May 2002; published 14 October 2002!

The devil’s staircase is a term used to describe surface or an equilibrium phase diagram in which various
ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example
is a one-dimensional Ising model@P. Bak and R. Bruinsma, Phys. Rev. Lett.49, 249 ~1982!# wherein long-
range and short-range forces compete, and the periodicity of the gaps between minority species covers all
rational values. In many physical cases, crystal growth proceeds by adding surface layers that have the lowest
energy, but are then frozen in place. The emerging layered structure is not the thermodynamic ground state, but
is uniquely defined by the growth kinetics. It is shown that for such a system, the grown structure tends to the
equilibrium ground state via a devil’s staircase traversing an infinity of intermediate phases. It would be
extremely difficult to deduce the simple growth law based on measurement made on such a grown structure.

DOI: 10.1103/PhysRevE.66.041605 PACS number~s!: 68.55.2a, 75.10.Hk, 81.30.2t
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The original devil’s staircase is a footpath betwe
Kingshouse to Kinlochleven in Scotland, so called beca
of the huge number of discrete steps between Glencoe
the ridge. In technical usage, the term has been used to
scribe situations in which the number of discrete steps wit
a finite range becomes formally infinite. Examples inclu
inter alia the formation of facets of a crystal@2,3#, antiferro-
electric, smectic and lyotropic liquid crystals@4,5,3#, mag-
netic structure in cerium monopnictides@6# and granular me-
dia @7#. Usually the staircase emerges from the interp
between long-range repulsive~antiferromagnetic! and short-
range attractive~ferromagnetic! forces, with transitions be
tween stable phases appearing as the relative strengths o
interactions are altered. The precise form of the interacti
is not crucial@8#.

The drive toward nanofabrication has led to a tremend
interest in growing multilayer structures. In typical metho
such as molecular beam epitaxy or chemical vapor dep
tion, careful control of the composition of the deposited m
terial is required to create complex artificial structures. Wi
out such careful control nonperiodic structures tend to fo
By contrast, some structures of technological interest suc
quantum dots may self-assemble, and understanding th
cal equilibria that govern growth is crucial. In this artic
layer-by-layer surface growth for a simple model is shown
yield a devil’s staircase structure. This suggests that fo
wide class of systems the expected structure grown at
temperature is aperiodic, and might easily be misinterpre
as disordered. This apparent disorder is not real, but ar
from the locally stable structure being dependent on
thickness of the film, and there being an infinite number
locally stable structures.

Specifically, the Hamiltonian for our model is equivale
to that considered by Bak and Bruinsma@1,9#,
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This model describes a situation in which each layer c
be of one of the two typess i561. The first term givess i
521 a lower formation energy thans i511, while the
second term gives a long-ranged repulsion between like
ers.

Previous work has concentrated on the devil’s staircas
an equilibrium phenomenon, and searched for the thermo
namic ground state. Here, by contrast, the dynamics
growth are considered, spins being added to the system s
to minimize the energy, but then being fixed forever as f
ther layers grow.

Many physical systems can be mapped onto this Ham
tonian: a simple example is a line of charges in an exter
field. The same Hamiltonian describes a situation where
s i represent the separations between layers rather than
layers themselves. Now the first term indicates that it co

he

FIG. 1. Self-similar devil’s staircase of phases reached asy
totically in growth with n52. Plotted are the value ofA and the
mean values ofs evaluated over the final 2520 layers of a 300 0
layer sample. 2520 (52333235373233) is chosen because
is commensurate with all periodicities from one to ten layers, a
with 12,14,15,18,20,21, etc!. For these cases the plotted value
^s& is exact, for others it may be60.04%.
©2002 The American Physical Society05-1
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FIG. 2. Mean surface potential averaged over the preceding 72 layers before growing thei th s511 layer. Highly ordered regions
correspond to short-period phases which are stable over a significant range of thickness. The slope of the graph shows that even w
regions, equilibrium has not been reached and ultimately the order breaks down as a new phase is stabilized. A long-range trend
asymptotic value of̂V&72 is observed. This figure generated forn51, A51, V(0)50.

FIG. 3. Detail from Fig. 2, illustrating the ordered nature of the potential variation for a region where long-period phases are sta
long-period repeats give rise to multiple values of^V&72 within the same phase, hence the multiple branches. This multiplicity can be red
or eliminated by considerinĝV&2520 at the expense of smearing out details. In this respect the figure is not self-similar. The~arbitrarily
chosen! 72-layer averaging is significant on the scale of this figure, manifesting itself for the phases that are stable over more than
as an initial increase and subsequent curvature in^V&72. The pure phase behavior is typically a linear decrease of^V&72 with N, as seen after
72 layers for those phases which are stable over a sufficiently long period.
041605-2
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less energy to grow either type on a similar layer, while
second term again indicates long-range repulsion~attraction!
between like~unlike! layers. This might describe a syste
where epitaxial growth was favored, but generates a lo
range strain field that needs to be periodically relieved.

Alternately, it may describe a situation such as silic
carbide growth@10,11# or stacking of close-packed plane
where each layer is locally eitherABA or ABC stacked de-
pending on its neighbors. Nows represents the relative or
entation of adjacent layers. In close-packed layer (AB) and
interlayer (s) notation, equivalent stacking sequences for
containing a growth fault are

. . . A B C A B C A C B A C B A. . . , ~2!

••• 1 1 1 1 1 1 2 1 1 1 1 1 1 •••. ~3!

Notice that a single fault of this type cannot be accomm
dated within periodic boundary conditions. This led Bak a
Bruinsma to postulate that the actual defects in the dev
staircase are fractional, since more than one must be cre
together. In the growth case there is no such constraint:
is equivalent to the difference between intrinsic and extrin
stacking faults in close-packed materials~which can arise
from removal or insertion of a plane! and growth defects
~basal plane twins! which reverse the sense of stacking a
can be generated only by finite shear of the entire sampl
during growth.

Finally, the model can describe a simple histor
dependent system, where the state of the system depen
a sum over its historical values. In this case the ‘‘layer nu
ber’’ should be interpreted as a time rather than space dim
sion.

For the growth dynamics, one simply considers add
the (n11)th layer to the preexistingn layers with whichever
spin reduces the energy. This can be determined entirel
the sign of the local potential at the position of the next la
Vn11:

DEn115Vn11sn115S A1(
j 51

N

r i j
2ns j Ds i . ~4!

In zero-temperature case considered here, ifVn11 is
positive, the next added layersn11521, otherwise
sn11511. Furthermore, the final structure is uniquely d
fined and while it may appear random, it has zero entrop

At thermodynamic equilibrium, or asymptotically for th
growth dynamics, this model@Eq. ~1!# has two simple limit-
ing cases. For weak long-range interactions defined by

A.F (
n51

`

n2nG5z~n!, ~5!

sn521 for all n, meanwhile for smallA alternating behav-
ior sn5(21)n is observed. For intermediate values ofA, the
devil’s staircase of phases is recovered in the asympt
limit ~Fig. 1! @1#.

In the case of growth, we find that a convenient parame
to monitor is^V&m , the rolling mean value of the potentia
betweenVn2m and Vn wherever a layer typesn511 is
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grown. For the case ofn52 the asymptotic value of̂V&2520
plotted againstA picks out the conventional devil’s staircas
behavior~Fig. 1!.

Our interest lies in the convergence of the structure w
layer number—physically how thick a film must grow t
recover bulk behavior. Again this can be monitored us
^V&m , now plotted against the layer number. Forn52 the
growth converges fairly rapidly to the equilibrium value, th
effective screening of the surface is fast compared with
integer layer spacing. For smallern convergence is slow
Figures 2–4 show the case ofn51, A51, now the screen-
ing is sufficiently slow that a wide range of different phas
from the ‘‘devil’s staircase’’ are actually observed over
number of layers.

The actual phases and ‘‘screening’’ effect are illustra
by the running average of the ratio ofs511 to s521
over the previous 72 layers~72 is chosen such that phas
with periods 2,3,4,6,8,9, etc., will give a constant value!. To
further reduce the oscillation, the ratio is printed out only
layers withs511. Substantial single phase regions can
seen, together with shorter transitional regions. The ove
trend towards a limiting value can be seen.

Each phase is stable only over a finite number of laye
Since the range of stability is inversely proportional to t
period of the structure@1#, the thickness over which som
long-period structures are stable will be shorter than the
riodic repeat distance of these structures. Consequently,

FIG. 4. Mean value ofs for n51, A51. The upper line is
averaged over the preceding 2520 layers, picking out as stra
lines phases of repeat period as in Fig. 1. Transitions between t
short-period phases are characterized by longer-period pha
which are shown by thick black lines~actually representing a rapid
fluctuation betweenK/2520 and (K11)/2520 for integerK). The
lower line is averaged over the whole layer, and shows the v
slow monotonic growth of̂ s& towards the asymptotic value o
^s&50). The increase in the mean value of 1/^s& is logarithmic, a
reasonable fit to the graph being^s&5@722.9 lnN#21. For higher
values ofA the convergence of̂s&→0 is even slower. Forn.1
the asymptotic value of̂s& is nonzero: it is a phase from the devil
staircase dependent uponA.
5-3
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cannot be identified unambiguously.
The long-term trend of Fig. 2 is toward̂V&m520.5.

This corresponds to equal numbers ofs561 which give a
mean field value ofV50 averaged over all layers, an
^V&m52A/2520.5 averaged over thes511 layers only.
A very curious phenomenon observed in Fig. 2 is that
ordered phases showantiscreeningbehavior: the mean valu
of ^V&m moves away from the asymptotic value for most
the range of the ordered phase. Thus while the overall tr
is an asymptotic increase of^V&m , within any given phase
d^V&m /dN is negative@12#. Evolution towards the asymp
tote is achieved via the boundaries between the phases, r
than the screening by the phases themselves.

In mapping onto a real growth process, the value ofA is
determined by the material being deposited; however, it m
be possible by choice of substrate or external applied fiel
control the initial value of the potential. By doing so, th
density profile ofs511 may be varied. This is not straigh
forward however: if the initial condition is compatible wit
the equilibrium structure, a perfect multilayer can be grow
if not, the concentration will traverse all possible phases w
s511 density intermediate between the starting and eq
librium ones. There are an infinity of these phases, but t
thickness must take an integer value, thus not all phases
actually be observed. If the interlayer spacing is taken to
of atomic dimension, a perfectly grown~i.e., zeroT, zero
entropy! film of even a millimeter thickness may not reac
equilibrium and will appear disordered to any experimen
probe. Of course, in a real system thermal effects and im
fections in growth will cause additional disorder—the cent
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result of the present work is to show that even when
experimental imperfections are removed, growth kinet
still results in a structure that will appear disordered.

By interpreting the layer numberN as a time rather than a
thickness, this type of growth-kinetic model also provides
simple model of history dependence. In many social p
nomena, decisions are made for one of two courses of ac
based on the evidence of the past behavior with more re
evidence having a stronger weight@13#. Here the model al-
ready contains enough complexity to behave counterin
itively: the long-term trend of increasinĝV&m is opposite in
sign to thed^V&m /dN measured over the stable phases,
spite the fact that formally the devil’s staircase provides
stable phase at allN, and by implicationd^V&m /dN is nega-
tive everywhere. Of course, the spin-Ising model is a gr
oversimplification of any real decision making process: t
only serves to emphasize the nontrivial relation between
model and its behavior, and the difficulty for measurem
when d^V&m /dN is negative everywhere whileDV/DN is
positive.

In sum, the growth kinetics of a simple model exhibitin
long-range antiferromagnetic and short-range ferromagn
ordering have been studied. This has been shown to ex
logarithmically slow equilibration to the equilibrium struc
ture, passing through a formally infinite number of interm
diate phases that form a devil’s staircase.
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